
Scalable Router Memory Architecture Based on
Interleaved DRAM

Feng Wang and Mounir Hamdi
Computer Science Department of

The Hong Kong University of Science and Technology
{fwang, hamdi}@cs.ust.hk

Abstract Routers need buffers to store and forward pack-
ets, especially when there is network congestion. With current
memory technology, neither the SRAM nor the DRAM alone is
suitable for high-speed Internet routers which require both large
capacity and fast access time. Some previous work has been done
to combine the two technologies together and make a hybrid
memory system [1]. In this paper1, we propose another hybrid
memory system based on the interleaved DRAM memories. We
devise an efficient memory management algorithm to provide
hard performance guarantees to the memory system. The main
contribution of this architecture is that it can scale to a very large
capacity with interleaved DRAM while only employing necessary
SRAM of the same size as in [1]. Another advantage of this archi-
tecture is that the interleaved DRAM provides flexibilities to
make the memory management algorithms efficient and the
memory system very responsive at high speed rates.

I. INTRODUCTION

Routers need buffers to store and forward packets, espe-
cially when there is network congestion [2]. In today’s data
communication networks, memory technology plays a very
important role in affecting the performance of routers, and as a
result affecting the performance of the whole network.

What makes the router memory difficult to build can be
elaborated in two dimensions. One is the capacity requirement
of the router memory. Take Internet as an example, it is a rule
of thumb that the routers should be capable of holding packets
at least for packets’ round-trip life time. This fact results in a
buffer size requirement in routers of RTT R [3], where RTT is
a round-trip time for a packet and R is the line rate. Assuming
an RTT of 250 ms and the line rate R of 40 Gbps, the buffer
size of one single port equals to 10 Gbits. The other dimension
of the difficulties is the memory access time requirement. Still
assuming a line rate R of 40 Gbps and the average size of one
single packet to be 40 bytes, the router memories are required
to be able to accommodate one packet every 8 ns.

With current memory technologies, neither of the SRAM
or DRAM [4] can meet the two requirements simultaneously.
The SRAM is fast enough with an access time of around 4 ns,
but it cannot be built with large capacities (normal capacity is
of tens of MB) and is power-hungry as well. The DRAM can
be built with a large capacity, but the access time is too large,
which is around 40 ns. The reason behind this dilemma is that
current memories (architectures) are most optimized for com-
puter architecture where instruction/data stored in memories
will be reused for considerably many times. Hence, the hierar-

1 This work is supported under RGC HKUST6260/04E.

chical cache based memory architecture suits the computer
architecture quite well. While in router memories, data (pack-
ets) are seldom reused. Every packet just comes into the mem-
ory and leaves sometime afterwards, normally only once and
never comes back again. In this situation, the cache techniques
widely used in computer memory architecture will find little
use in the router context since the time or space locality prop-
erties do not hold any more.

What makes the router memory more challenging to build
is that we should maintain multiple queues, rather than just one
single first-in-first-out (FIFO) queue. Intuitively, dispatching
and storing packets in multiple separate queues will cause a lot
of overhead to the memory management algorithms.

One natural idea is to combine the SRAM and DRAM
technologies together and make hybrid memory architectures
with both large capacity and a reasonable small access time.
Some previous work has been carried out in [1] and [5]. In [1],
the authors proposed a memory architecture with one large
DRAM memory sandwiched by two smaller SRAM memories,
as shown in figure 1. The DRAM serves as the main storage
for packets, and the head and tail SRAM serve as two buffers
for fast reading and writing. Scheduling packets between the
SRAM and the DRAM is what was called a memory manage-
ment algorithm (MMA). They proposed three memory man-
agement algorithms that have different tradeoffs between the
size of the SRAM and the pipelined delay. Their main idea is
to wait in the SRAM to gather b packets in one queue, and
then transfer them together to the DRAM in just one write
operation of the DRAM. In this way, they hide the access time
gap between the SRAM and the DRAM (assuming the access
time of the DRAM is b times that of the SRAM). In [5], the
memory architecture was nearly the same, except that the au-
thors used b interleaved DRAM memories to replace the one
single DRAM used in [1]. Packets from the SRAM were writ-
ten into the distributed DRAM memories in an interleaved
way. In this way, they can match the access time of SRAM
and DRAM. However, the memory management between the
SRAM and the DRAM was based on some randomized algo-
rithm. So, the performance of this proposal is only guaranteed
with a given probability. A packet with an uncertain delay or
dropped not because of congestions in the memory systems
will cause serious overhead in the whole data networks (e.g.
unnecessary TCP retransmissions). Thus, the proposal in [5]
will not see much practical use in real systems.

In this paper, we propose a memory architecture bearing
two aims in mind. First, the memory system should scale to
large capacities. Secondly, the memory system should be fast

0-7803-9569-7/06/$20.00 c©2006 IEEE

57

responsive to burst traffic. We also use interleaved DRAM in
the middle for main storage as that in [5], but we use a differ-
ent memory management algorithm. We use a deterministic
memory management algorithm to schedule packets between
the head/tail SRAM and the interleaved DRAM. Thus, we can
make hard delay and throughput guarantees, rather than prob-
abilistic ones. On the other hand, we can provide better aver-
age performance than that in the architecture in [1].

The rest of this paper is organized as follows. In section
II, we introduce currently proposed hybrid SRAM/DRAM
network memory architectures. Then in section III, we propose
our architecture and devise a memory management algorithm
(MMA) for it, which is based on a new model of a bipartite
matching problem. We analyze the performance of the MMA
in section IV and discuss some practical considerations in sec-
tion V. Then, we conclude the paper.

II. RELATED WORK

Building memories for high performance routers has been
a challenging task for a long time. We are not sure about how
companies make their router memory products (typically is
classified), and there seems to be just a little work in academia
talking about this issue.

The most concrete and practical result came from [1]. The
authors used hybrid memory architecture as shown in figure 1.
Logically, the hybrid memory maintains a set of Q first-come-
first-out (FIFO) queues. The head and tail of each FIFO queue
reside in the SRAM, while the middle of the FIFO queue re-
sides in the DRAM. As packets arrive at the memory system,
they are immediately written to the tail of an FIFO queue in
the SRAM cache, where they wait for the memory manage-
ment algorithm (MMA) to transfer them to the corresponding
FIFO queue in the DRAM. The MMA always transfers a block
of b packets every time, never smaller, from an SRAM FIFO
queue to the corresponding DRAM FIFO queue. Similarly, the
MMA always transfers packets from the DRAM queues to the
SRAM queues in blocks of b packets. Note that b is normally
the ratio of the access time of the DRAM to that of the SRAM.
Different write granularities to the SRAM and the DRAM (one
write per packet to the SRAM and one write per b packets to
the DRAM) hide the access time gap between them.

Two main performance metrics of this architecture are the
SRAM size needed and the packet delay, if any, under the
MMA. We prefer smaller SRAM size since the cost of the
SRAM is normally very high and smaller SRAM might be
built on-chip as well. The packet delay dictates the promptness
of fulfilling the arbiter requests. The SRAM is sized so that
whenever the arbiter requests a packet, it is always delivered
within a bounded delay, regardless of the sequence of requests.
Due to the symmetric property of the architecture in figure 1, it
suffices to focus on only packets shuttling between the DRAM
and the head SRAM, which is how to replenish the head
SRAM to prevent a packet request loss from the outside.

Intuitively, since the MMA can only shuttle a block of b
packets (never smaller, and this is determined by the architec-
ture) of the same queue from the DRAM to the SRAM, the
size of SRAM should be large enough for holding some pre-

fetched packets that are not requested by the arbiter, but will
be used later. The MMA employed in [1] are based on a look-
ahead scheme to replenish the FIFO queues in the SRAM. The
MMA looks ahead sufficient many packet requests from the
arbiter. Then it combines this information with the number of
present packets in the head SRAM FIFO queues and deter-
mines which queue will become the first to be empty under the
sequence of arbiter requests. That queue is named as the earli-
est critical queue under the current request pattern. The MMA
chooses that critical queue and replenishes it with packets from
the corresponding DRAM FIFO queue. The MMA is called
the earliest critical queue first (ECQF) MMA. In particular, the
authors stated that a head SRAM buffer size of (1)Q b pack-
ets and a look-ahead of (1) 1Q b packets are sufficient for
the ECQF-MMA to service any sequence of arbiter requests
with a latency of (1) 1Q b time slots. The time slot is de-
fined as the smallest time gap between two consecutive re-
quests.

FIFO centers

Memory Management Alg.

FIFO tails FIFO heads

Large DRAM memory with large Access time T

Ingress SRAM
cache of FIFO tails

Egress SRAM
cache of FIFO heads

Arriving packets Departing packets

b packets

Arbiter

requests

1
2

Q

1
2

Q

1
2

Q

b packets b packets

write access
time = 2T

read access
time = 2T

Figure 1: Memory hierarchy of packet buffer, showing DRAM mem-
ory with heads and tails of each FIFO maintained in a smaller SRAM
cache [1].

One of the constraints of their scheduling algorithm is the
b packets as a block to be shuttled between the SRAM and the
DRAM. It is essential for the MMA to hide the access time
gap between the SRAM and the DRAM.

Another proposed architecture is in [5]. They use inter-
leaved DRAM instead of one single DRAM. The MMA in [5]
hides the access time gap between the SRAM and the DRAM
by dispatching write (read) b packets into b interleaved
DRAM. It is obvious to see that the packet-scheduling algo-
rithm here is expected to be more complex since the MMA is
dealing with packets in a finer granularity, one packet per
DRAM. Interleaved DRAM can be viewed as distributed re-
sources, and the simplest way to coordinate distributed re-
sources is to employ probabilistic algorithms. In fact, in [5]
the authors have given a simple MMA based on uniformly
randomly dispatching packets into the b DRAM simultane-
ously. They stated that under certain conditions, chances of
packet conflicts would be very small. However, in router
memories packet drops due to reasons other than memory
overflow (an indication of network congestion) are always
undesirable since this will cause too many unnecessary cross-
layer adjustments (Take TCP retransmission as an example).

58

III. HYBRID ARCHITECTURE WITH INTERLEAVED
DRAM

We build our hybrid memory architecture based on two
observations on the memory architecture [1] mentioned above.

First, always transferring a block of b packets between the
SRAM and the DRAM certainly makes the MMA simple, but
waiting for collecting b packets of an FIFO queue surely add
some unnecessary delays for some packets, especially in
bursty traffic conditions.

Second, [1] cannot use more than one single DRAM in the
middle for main packet storage. This is determined by its
MMA (always transferring b packets, never less and never
more). The whole memory system is still limited within a few
Gbits with current DRAM technology. Using more than one
DRAM and making them interleaved will surely increase the
size, but it needs a new memory management algorithm.

Although [5] tried to use interleaved DRAM to increase
the whole memory capacity, their MMA is based on probabil-
ity guarantees.

In this paper, we employ the interleaved DRAM architec-
ture to scale the memory system. In particular, we devise an
efficient deterministic MMA to break the ‘block of b packet’
constraint.

A. Hybrid Memory Architecture with Interleaved DRAM

Figure 2 demonstrates our hybrid memory architecture
with the SRAM in the head and tail and interleaved DRAM in
the center containing the majority of packets. The only differ-
ence between figures 1 and 2 is in the center DRAM memo-
ries. Figure 2 uses b interleaved DRAM memories to replace
the single DRAM in figure 1.

Set of Interleaved DRAMs,
each with rate R/b,

FIFO centers
SRAM,

FIFO tails
SRAM,

FIFO heads

1
2

Q

1
2

Q

1
2

Q

1
2

Q

1
2

Q

1

2

b

Arriving
Data

R

Departing
Data

R

Arbiter

requests

M
em

ory M
anagem

ent A
lgorithm

M
em

ory M
anagem

ent A
lgorithm

Figure 2: Hybrid memory architecture with interleaved DRAM in the
center and smaller SRAM in the heads and tails of each FIFO queue.
The MMA resolves the write/read conflicts of individual DRAM.

We define parameters in figure 2 here. Logically, the
memory system maintains Q FIFO queues from the outside

point of view. We interleave b DRAM memories in our basic
architecture, where b is the ratio of the access time of the
DRAM to that of the SRAM. The value of b is normally
around 15 according to current memory technology. We will
see later that we can even make b larger than this ratio so that
we can make the memory system more scalable. For simplicity
of the presentation, we define the access time of SRAM one
time slot. We also assume, in one time slot, one packet comes
in and the arbiter issues one request. We can see that the ac-
cess time of the DRAM is b time slots. That is to say, in b time
slots, the DRAM can be written (read) once.

In figure 1, the MMA transfers b packets of the same
FIFO queue as a whole into the DRAM in b time slots. In fig-
ure 2, the MMA transfers b packets (not necessarily from the
same queue) from the SRAM to feed the b interleaved DRAM
memories individually (one packet per DRAM) in b time slots.
We maintain Q FIFO queues in every central DRAM and the
head and tail SRAM memories.

We make two assumptions here. First, we assume all in-
coming packets of the same size. Second, we assume we have
heavy traffic conditions. That is to say, there are always pack-
ets arriving at the tail SRAM and sufficiently many packets are
present in the DRAM. If the traffic is light, packets may not go
through the DRAM memories. We defer this discussion later.

B. Packet Placement in the Interleaved DRAM Memories

Packets belonging to the same FIFO queue will be placed
into the central DRAM memories in a round robin way, as
show in figure 3. But they are not necessarily transferred into
the DRAM in their arriving order. In particular, when a packet
comes into the SRAM, the DRAM which it should be written
into is determined immediately, but when to write the packet
to it is determined by the MMA. This provides flexibility to
the MMA. Assuming the packet is the i-th packet in its FIFO
queue, it should be written into the j-th DRAM, where j = i
mod b, as shown in figure 3.

A1

M
M

A

A1Ab+1A2b+1
B1Bb+1

Q1Qb+1

C1

A2Ab+2
B2Bb+2

Q2Qb+2

C2

AbA2b
BbB2b

QbQ2b

Cb

A1A2A3
B1B2

Q1Q2Q3

C1B1
A2
C1
A3
D1

A
rriving packets

Tail SRAM
Packets placed into the

interleaved DRAM

2

b

1

Figure 3: Packets belonging to the same queue are placed into the
interleaved DRAM memories in a round robin fashion. The MMA is
designed to schedule packets from the tail SRAM to DRAM memo-
ries without write conflicts.

59

In this paper, we only study scheduling packets between
the tail SRAM and the central interleaved DRAM, which cor-
responds to the left MMA in figure 2. It is interesting to notice
that scheduling packets between the interleaved DRAM and
the head SRAM which corresponds to the right MMA in figure
2 is similar to the left MMA due to the symmetric property of
this architecture. Put in another way, we can queue the re-
quests from the arbitrary arbiter in the head FIFO queues and
think of them as negative packets. Scheduling packets from the
central DRAM to the head SRAM can be thought of as sched-
uling the negative packets (requests) from the head SRAM to
the central DRAM.

IV. SCHEDULING THE INTERLEAVED DRAM
The MMA in figure 1 mainly determines which queue in

the SRAM should collect b packets in a block and then transfer
them into the DRAM. The MMA in figure 2 mainly deter-
mines which b packets should be transferred into the b indi-
vidual DRAM memories without conflict. We say there is a
conflict in a DRAM, if two packets are required to be written
into that DRAM in b time slots. It is obvious to see that b con-
secutive packets belonging to the same queue surely have no
conflict, since they are distributed into the DRAM in a round
robin way.

However, always scheduling ‘b packets of the same
queue’ will surely add some unnecessary delay to some pack-
ets. We can make the scheduling granularity finer by breaking
the ‘b packets of one queue’ constraint and try to transfer
packets upon arriving at the tail SRAM into the DRAM as
soon as possible. Since every packet has a definite DRAM to
be written into, write conflicts may occur between two con-
secutive packets. The MMA is mainly to resolve this kind of
conflicts.

For the simplicity of presentation, we assume one single
FIFO queue in the tail SRAM. All packets belonging to differ-
ent queues just queue in one single queue ordered by their ar-
riving time, as shown in the vertical queue in figure 3.

The MMA runs in rounds. In general, in one round b
packets are transfers from the tail SRAM to the b interleaved
DRAM memories (one packet per DRAM). One round takes b
time slots since the access time of each DRAM is b time slots.

In the beginning of one round, the MMA examines pack-
ets from the head of the SRAM FIFO queue. Every packet
knows exactly which DRAM it should go into. If the DRAM
the packet will go into is not reserved, the packet reserves that
DRAM. Otherwise, the MMA just skips this packet and exam-
ines the next packet in the SRAM FIFO queue. The MMA
stops examining packets when all b DRAM memories are re-
served and then transfers all the b packets that reserve the
DRAM memories. Then the MMA cancels all the DRAM res-
ervations and starts the next round of examination and trans-
ferring. In fact, examining and transferring packets can be
pipelined.

We formulate this algorithm as a Cumulative Matching
(CM) problem in the bipartite graph and call the corresponding
memory management algorithm CM-MMA.

P1 P2 P3 P4 P5 P6 Pb Pb+1PQ PQ+1

DRAM1 DRAM2 DRAM3 DRAMb

MMA examining

Figure 4: Bipartite graph for Cumulative Matching

In figure 4, the upper row of b vertices stand for the b
DRAM memories and the lower row of infinite vertices stand
for incoming packets. An arrow edge from a packet to a
DRAM means that the packet wants to reserve that DRAM.
The CM-MMA examines packets from the left to the right and
makes reservations. One successful reservation corresponds to
one matching (the thick line) in the bipartite graph in figure 4.
When the b DRAM memories are all reserved, we say the
maximum matching has been found and the CM-MMA starts
to transfer the matched packets from the SRAM to the DRAM
memories. Then the CM-MMA removes the corresponding b
vertices in the lower row and starts examining packets again
from the left for the next round of matching.

We note here that Q is much larger than b. In fact, in prac-
tice Q is at the order of thousands. Intuitively, since the value
of b is around 15, the CM-MMA will not advance right too
much to find a maximum matching.

V. ANALYSIS OF THE CM-MMA
Now we will investigate the properties of the cumulative

matching in figure 4.
It is obvious to see that the CM-MMA guarantees that

there is no starvation of any packet since the head packet of
the SRAM FIFO queue is always matched in the final match-
ing. That is to say, the CM-MMA advances at least one packet
forward in one round.

Lemma 1: Under the CM-MMA, the maximum matching
is always achievable if the number of packets in the SRAM is
larger than (1)Q b .

Proof: (By contradiction)
We start the proof from the very first round of the CM-

MMA when packets belonging to the same queue are assigned
orders consecutively. Assume that the CM-MMA has exam-
ined (1) 1Q b packets and there is at least one DRAM re-
maining unmatched. This means that none of the

(1) 1Q b packets reserves that DRAM. Since packets be-
longing to the same queue are assigned to the DRAM memo-
ries in a round robin fashion and they are consecutively or-
dered, no queue can contain more than 1b packets. Other-
wise, the DRAM will be reserved by at least one of the packets
from that queue. Since there are Q queues in the system, pack-

60

ets in the SRAM should not exceed (1)Q b , which leads to a
contradiction.

For the following rounds of matching, packets belonging
to the same queue may not be consecutive since some packets
are removed from the queue according to the CM-MMA, but
we can still prove that every DRAM will be reserved if the
number of packets in the SRAM is larger than (1)Q b . The
intuition here is that in every round b packets are switched out
and b packets are filled in the SRAM as well. We defer the
detailed proof to the appendix.

Lemma 2: Under the CM-MMA, given a DRAM j, for
any (1) 1Q b packets in the SRAM, there are at most
2 (1) 1Q b

b
packets that reserve the DRAM j.

This lemma is also easy to understand. For the very first
round of matching, since every two packets from the same
queue reserving the same DRAM will be jammed with at least
other 1b packets from the same queue. That is to say, pack-
ets reserve the same DRAM cannot be too close. However, for
the following rounds of matching, packets of the same queue
will be non-consecutive. However, this property still holds for
that situation. We defer the detailed proof to the appendix.

In summary, the two lemmas state this property: given a
DRAM j, under the CM-MMA, for (1) 1Q b packets resid-
ing in the SRAM, there are at least one packet and at

most 2 (1) 1Q b
b

 packets that reserve the DRAM j.

We say an MMA is stable if with this MMA the SRAM
will not overflow under any arriving traffic patterns.

Theorem: A size of (1) 1Q b for the SRAM suffices
for the CM-MMA to be stable in transferring packets from the
SRAM to the interleaved DRAM memories. The possible de-
lay of one packet is bounded within 2 (1) 1Q b time slots.

Proof: From lemma 1, we can see that if the size of the
SRAM is (1) 1Q b and when the SRAM is full with pack-
ets, the CM-MMA will always find a maximum matching and
dispatch the b packets into b DRAM memories in b time slots.
In the meanwhile, there are at most b packets arriving at the
SRAM in the b time slots. So, the number of packets in the
SRAM will never exceed (1) 1Q b . This means that the CM
MMA is stable.

For the delay analysis, consider a packet P and it servers
DRAM j. Lemma 2 states that in the SRAM there are no more

than 2 (1) 1Q b
b

 packets which reserve the DRAM j if the

size of the SRAM is (1) 1Q b . This suggests that packet P

will be matched no later than the 2 (1) 1Q b
b

-th round,

which leads to a delay of no more than 2 (1) 1Q b time slots
since the CM-MMA takes b time slots in one round in dis-
patching packets from the SRAM to the interleaved DRAM.

VI. PRACTICAL CONSIDERATIONS

We note here that the size of the SRAM requirement is the
same as that in [1], but we use the interleaved DRAM in the
center which can scale to a very larger size. That is to say, we
use the same small size of the SRAM to support a lager
DRAM main storage.

To make the interleaved memory architecture even more
scalable, we can extend b to a larger value, say, 2b. It is inter-
esting to see that even if we use 2b DRAM interleaved, we can
still define the maximum matching to be b matches and only
dispatch b packets into the 2b DRAM since the access time of
the DRAM is b and b matches are enough to make the CM-
MMA stable. It is easy to see that the size of the SRAM and
the delay of packets do not scale with the expansion of the
interleaved DRAM. It is only dictated by the ratio of the ac-
cess time of the DRAM to the SRAM and the number of
queues the memory system should maintain.

The worst case packet delay of the CM-MMA is competi-
tive to that in [1]. However, since we break the ‘b packets of
the same queue’ constraint, the performance is expected to be
better, especially under some light traffic conditions for all
queues. Assuming a light traffic condition and there are just
several (say, less than b) packets in every queue, the MMA in
[1] will keep waiting until one of the queues contains more
than b packets, while the CM-MMA may still find a maximum
matching since the bunch of b packets here do not necessarily
come from the same queue. What is more, note that b packets
from the same queue naturally form a maximum matching in
CM-MMA. Therefore, the CM-MMA is responsively faster
than the MMA in [1]. Put in another way, the MMA in [1]
transfers packets in a granularity of b packets from the same
queue, while the CM MMA transfers packets in a granularity
of single packets and combines them to be a bunch of b pack-
ets. We will have numerical analysis and simulation results in
a sequel paper. With real implementation that we state below,
we can further improve the packet promptness, thus decreasing
the packet delays.

Both advantages we state above seem to come at the cost
of the high-complexity CM-MMA. It is true that the crude
version CM-MMA has a time complexity of ()O Q since we
may have to examine at most (1) 1Q b packets before find-
ing a maximum matching (b can be viewed as a constant).
However, we can amortize this complexity to each packet to
make the time complexity to be O(1). We can notice these two
facts: a) packets do not change their reservations even if they
fail in one round, and b) a previous reservation has priority
over the later reservation to the same DRAM. Using these two
facts, in real implementation we can buffer the reservation
requests in every DRAM. Moreover, the transmission of
matched packets does not need to be synchronized either. In
particular, we can transfer a packet immediately after its arri-
val to the buffer of the corresponding DRAM. In this way, we
do not need the (1) 1Q b size SRAM in the tail any longer,
but we need SRAM buffers in each DRAM. Using lemma 2, it
is obvious to see that the size of one buffer in the DRAM is

61

less than 2 (1) 1Q b
b

. Therefore, the total size of the SRAM

is 2 (1) 1Q b since we have b interleaved DRAM. It doubles
the size of tail SRAM, but the memories are distributed and we
can employ static allocations for each SRAM as well.

We can see that the time complexity to handle every
packet is O(1) since it has the definite DRAM to go and every
packet only makes its reservation once. Packet transmissions
can be desynchronized. It further improves the promptness of
arriving packets. This will especially benefit burst traffics.

Another practical consideration is that we assumed heavy
traffic in the proof of the theorem. In practice in the light traf-
fic conditions, the CM MMA should be modified slightly. The
examination process will end whenever we find a maximum
matching or reach the end of packet queue. This will also pro-
vide the CM MMA with the ability to cope with bursty traffic.
The CM MMA will try to transfer packets at the silence of the
arriving packets, not necessarily to wait until b packets are
ready.

VII. CONCLUSIONS

To make fast and large network memories, we employ a
hybrid SRAM/DRAM architecture with interleaved DRAM in
the middle for main packet storage and the SRAM in the tail
(head) for write (read) buffering.

We designed a deterministic memory management algo-
rithm to provide hard performance guarantees to the memory
system. In particular, we can provide more scalability of the
memory system and less average delay with the same SRAM
size requirement as that in previous work in [1].

We believe the CM-MMA algorithm is ready to be im-
plemented in hardware and capable of building high-
performance network memories for several generations of
technologies to come.

REFERENCE

[1] S. Iyer, R. R. Kompella, and N. McKeown, "Analysis of a mem-
ory architecture for fast packet buffers," IEEE Workshop on
High Performance Switching and Routing, 2001.

[2] H. J. Chao, "Next generation routers," invited paper, IEEE pro-
ceeding, vol. 90, 2002.

[3] G. Appenzeler, I. Keslassy, and N. McKeown, "Sizing Router
Buffers," ACM SIGCOMM, 2004.

[4] "http://www.samsung.com."
[5] G. Shrimali and N. McKeown, "Building packet buffers using

interleaved memories," IEEE Workshop on High Performance
Switching and Routing, 2005.

APPENDIX

Complete Proof of Lemma 1 and Lemma 2

We prove the two lemmas together.
Consider a DRAM j. Assume the CM-MMA has run for n

rounds and the SRAM is full with (1) 1Q b packets.
Therefore, there are (1) 1Q b nb packets in total,

which have arrived in the memory system. Considering a arbi-
trary DRAM j, we analyze how many packets could reserve
the DRAM j.

We use iq to denote the number of packets belonging to
the i-th FIFO queue. Then iq can always be represented by the
following form:

(0)i i i iq n b m m b
This form tells that at least in packets and at most
1in packets from the i-th FIFO queue reserve the DRAM j,

since all the packets are assigned to the DRAM in a round
robin way.

Then 1 (1) 1Q
i iq Q b nb .

That is to say:
1 1

1 1

1
1

(1) 1

(1) 1

(1) 1

Q Q
i i i i

Q Q
i i i i

Q
Q i i
i i

n b m Q b nb

n b Q b nb m

Q b nb m
n

b
Since 1max() (1)Q

i im Q b , we can see that

1
1 1min()Q

i i
nbn n

b b
Since in are integers, 1min() 1Q

i in n .
This formula indicates that among the (1) 1Q b nb

packets there are at least 1n packets that reserve the DRAM
j. Since every round matches exactly one packet to the DRAM
j, after n rounds, there is at least one packet left that reserves
the DRAM j in the (1) 1Q b b packets. This proves lemma 1.

It is obvious to see that for (0)i i i iq n b m m b pack-
ets in the i-th FIFO queue, there are at most 1in packets
which can reserve the DRAM j, and 1im .

Thus, we can calculate

1
(1) 1 2 1max()Q

i i
Q b nb Q bn Q n

b b b

1
2 1max((1))

2 (1) 1

Q
i i

bn Q n Q
b b

Q b n
b

Using the same analysis as above, we can see that there

are at most 2 (1) 1Q b
b

 packets that reserve the DRAM j

after n rounds. This proves lemma 2.

62

