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Abstract  Routers need buffers to store and forward pack-
ets, especially when there is network congestion. With current 
memory technology, neither the SRAM nor the DRAM alone is 
suitable for high-speed Internet routers which require both large 
capacity and fast access time. Some previous work has been done 
to combine the two technologies together and make a hybrid 
memory system [1]. In this paper1, we propose another hybrid 
memory system based on the interleaved DRAM memories. We 
devise an efficient memory management algorithm to provide 
hard performance guarantees to the memory system. The main 
contribution of this architecture is that it can scale to a very large 
capacity with interleaved DRAM while only employing necessary 
SRAM of the same size as in [1]. Another advantage of this archi-
tecture is that the interleaved DRAM provides flexibilities to 
make the memory management algorithms efficient and the 
memory system very responsive at high speed rates. 

I. INTRODUCTION

Routers need buffers to store and forward packets, espe-
cially when there is network congestion [2]. In today’s data 
communication networks, memory technology plays a very 
important role in affecting the performance of routers, and as a 
result affecting the performance of the whole network. 

What makes the router memory difficult to build can be 
elaborated in two dimensions. One is the capacity requirement 
of the router memory. Take Internet as an example, it is a rule 
of thumb that the routers should be capable of holding packets 
at least for packets’ round-trip life time. This fact results in a 
buffer size requirement in routers of RTT R [3], where RTT is 
a round-trip time for a packet and R is the line rate. Assuming 
an RTT of 250 ms and the line rate R of 40 Gbps, the buffer 
size of one single port equals to 10 Gbits. The other dimension 
of the difficulties is the memory access time requirement. Still 
assuming a line rate R of 40 Gbps and the average size of one 
single packet to be 40 bytes, the router memories are required 
to be able to accommodate one packet every 8 ns.

With current memory technologies, neither of the SRAM 
or DRAM [4] can meet the two requirements simultaneously. 
The SRAM is fast enough with an access time of around 4 ns,
but it cannot be built with large capacities (normal capacity is 
of tens of MB) and is power-hungry as well. The DRAM can 
be built with a large capacity, but the access time is too large, 
which is around 40 ns. The reason behind this dilemma is that 
current memories (architectures) are most optimized for com-
puter architecture where instruction/data stored in memories 
will be reused for considerably many times. Hence, the hierar-

1 This work is supported under RGC HKUST6260/04E. 

chical cache based memory architecture suits the computer 
architecture quite well. While in router memories, data (pack-
ets) are seldom reused. Every packet just comes into the mem-
ory and leaves sometime afterwards, normally only once and 
never comes back again. In this situation, the cache techniques 
widely used in computer memory architecture will find little 
use in the router context since the time or space locality prop-
erties do not hold any more.  

What makes the router memory more challenging to build 
is that we should maintain multiple queues, rather than just one 
single first-in-first-out (FIFO) queue. Intuitively, dispatching 
and storing packets in multiple separate queues will cause a lot 
of overhead to the memory management algorithms. 

One natural idea is to combine the SRAM and DRAM 
technologies together and make hybrid memory architectures 
with both large capacity and a reasonable small access time. 
Some previous work has been carried out in [1] and [5]. In [1], 
the authors proposed a memory architecture with one large 
DRAM memory sandwiched by two smaller SRAM memories, 
as shown in figure 1. The DRAM serves as the main storage 
for packets, and the head and tail SRAM serve as two buffers 
for fast reading and writing. Scheduling packets between the 
SRAM and the DRAM is what was called a memory manage-
ment algorithm (MMA). They proposed three memory man-
agement algorithms that have different tradeoffs between the 
size of the SRAM and the pipelined delay. Their main idea is 
to wait in the SRAM to gather b packets in one queue, and 
then transfer them together to the DRAM in just one write 
operation of the DRAM. In this way, they hide the access time 
gap between the SRAM and the DRAM (assuming the access 
time of the DRAM is b times that of the SRAM). In [5], the 
memory architecture was nearly the same, except that the au-
thors used b interleaved DRAM memories to replace the one 
single DRAM used in [1]. Packets from the SRAM were writ-
ten into the distributed DRAM memories in an interleaved 
way. In this way, they can match the access time of SRAM 
and DRAM. However, the memory management between the 
SRAM and the DRAM was based on some randomized algo-
rithm. So, the performance of this proposal is only guaranteed 
with a given probability. A packet with an uncertain delay or 
dropped not because of congestions in the memory systems 
will cause serious overhead in the whole data networks (e.g. 
unnecessary TCP retransmissions). Thus, the proposal in [5] 
will not see much practical use in real systems. 

In this paper, we propose a memory architecture bearing 
two aims in mind. First, the memory system should scale to 
large capacities. Secondly, the memory system should be fast 
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responsive to burst traffic. We also use interleaved DRAM in 
the middle for main storage as that in [5], but we use a differ-
ent memory management algorithm. We use a deterministic 
memory management algorithm to schedule packets between 
the head/tail SRAM and the interleaved DRAM. Thus, we can 
make hard delay and throughput guarantees, rather than prob-
abilistic ones. On the other hand, we can provide better aver-
age performance than that in the architecture in [1]. 

The rest of this paper is organized as follows. In section 
II, we introduce currently proposed hybrid SRAM/DRAM 
network memory architectures. Then in section III, we propose 
our architecture and devise a memory management algorithm 
(MMA) for it, which is based on a new model of a bipartite 
matching problem. We analyze the performance of the MMA 
in section IV and discuss some practical considerations in sec-
tion V. Then, we conclude the paper. 

II. RELATED WORK

Building memories for high performance routers has been 
a challenging task for a long time. We are not sure about how 
companies make their router memory products (typically is 
classified), and there seems to be just a little work in academia 
talking about this issue. 

The most concrete and practical result came from [1]. The 
authors used hybrid memory architecture as shown in figure 1. 
Logically, the hybrid memory maintains a set of Q first-come-
first-out (FIFO) queues. The head and tail of each FIFO queue 
reside in the SRAM, while the middle of the FIFO queue re-
sides in the DRAM. As packets arrive at the memory system, 
they are immediately written to the tail of an FIFO queue in 
the SRAM cache, where they wait for the memory manage-
ment algorithm (MMA) to transfer them to the corresponding 
FIFO queue in the DRAM. The MMA always transfers a block 
of b packets every time, never smaller, from an SRAM FIFO 
queue to the corresponding DRAM FIFO queue. Similarly, the 
MMA always transfers packets from the DRAM queues to the 
SRAM queues in blocks of b packets. Note that b is normally 
the ratio of the access time of the DRAM to that of the SRAM. 
Different write granularities to the SRAM and the DRAM (one 
write per packet to the SRAM and one write per b packets to 
the DRAM) hide the access time gap between them.  

Two main performance metrics of this architecture are the 
SRAM size needed and the packet delay, if any, under the 
MMA. We prefer smaller SRAM size since the cost of the 
SRAM is normally very high and smaller SRAM might be 
built on-chip as well. The packet delay dictates the promptness 
of fulfilling the arbiter requests. The SRAM is sized so that 
whenever the arbiter requests a packet, it is always delivered 
within a bounded delay, regardless of the sequence of requests. 
Due to the symmetric property of the architecture in figure 1, it 
suffices to focus on only packets shuttling between the DRAM 
and the head SRAM, which is how to replenish the head 
SRAM to prevent a packet request loss from the outside. 

Intuitively, since the MMA can only shuttle a block of b
packets (never smaller, and this is determined by the architec-
ture) of the same queue from the DRAM to the SRAM, the 
size of SRAM should be large enough for holding some pre-

fetched packets that are not requested by the arbiter, but will 
be used later. The MMA employed in [1] are based on a look-
ahead scheme to replenish the FIFO queues in the SRAM. The 
MMA looks ahead sufficient many packet requests from the 
arbiter. Then it combines this information with the number of 
present packets in the head SRAM FIFO queues and deter-
mines which queue will become the first to be empty under the 
sequence of arbiter requests. That queue is named as the earli-
est critical queue under the current request pattern. The MMA 
chooses that critical queue and replenishes it with packets from 
the corresponding DRAM FIFO queue. The MMA is called 
the earliest critical queue first (ECQF) MMA. In particular, the 
authors stated that a head SRAM buffer size of ( 1)Q b  pack-
ets and a look-ahead of ( 1) 1Q b  packets are sufficient for 
the ECQF-MMA to service any sequence of arbiter requests 
with a latency of ( 1) 1Q b  time slots. The time slot is de-
fined as the smallest time gap between two consecutive re-
quests. 
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Figure 1: Memory hierarchy of packet buffer, showing DRAM mem-
ory with heads and tails of each FIFO maintained in a smaller SRAM 
cache [1].

One of the constraints of their scheduling algorithm is the 
b packets as a block to be shuttled between the SRAM and the 
DRAM. It is essential for the MMA to hide the access time 
gap between the SRAM and the DRAM. 

Another proposed architecture is in [5]. They use inter-
leaved DRAM instead of one single DRAM. The MMA in [5] 
hides the access time gap between the SRAM and the DRAM 
by dispatching write (read) b packets into b interleaved 
DRAM. It is obvious to see that the packet-scheduling algo-
rithm here is expected to be more complex since the MMA is 
dealing with packets in a finer granularity, one packet per 
DRAM. Interleaved DRAM can be viewed as distributed re-
sources, and the simplest way to coordinate distributed re-
sources is to employ probabilistic algorithms.  In fact, in [5] 
the authors have given a simple MMA based on uniformly
randomly dispatching packets into the b DRAM simultane-
ously. They stated that under certain conditions, chances of 
packet conflicts would be very small. However, in router 
memories packet drops due to reasons other than memory 
overflow (an indication of network congestion) are always 
undesirable since this will cause too many unnecessary cross-
layer adjustments (Take TCP retransmission as an example).  

58



III. HYBRID ARCHITECTURE WITH INTERLEAVED 
DRAM 

We build our hybrid memory architecture based on two 
observations on the memory architecture [1] mentioned above. 

First, always transferring a block of b packets between the 
SRAM and the DRAM certainly makes the MMA simple, but 
waiting for collecting b packets of an FIFO queue surely add 
some unnecessary delays for some packets, especially in 
bursty traffic conditions.  

Second, [1] cannot use more than one single DRAM in the 
middle for main packet storage. This is determined by its 
MMA (always transferring b packets, never less and never 
more). The whole memory system is still limited within a few 
Gbits with current DRAM technology. Using more than one 
DRAM and making them interleaved will surely increase the 
size, but it needs a new memory management algorithm. 

Although [5] tried to use interleaved DRAM to increase 
the whole memory capacity, their MMA is based on probabil-
ity guarantees. 

In this paper, we employ the interleaved DRAM architec-
ture to scale the memory system. In particular, we devise an 
efficient deterministic MMA to break the ‘block of b packet’
constraint. 

A. Hybrid Memory Architecture with Interleaved DRAM 

Figure 2 demonstrates our hybrid memory architecture 
with the SRAM in the head and tail and interleaved DRAM in 
the center containing the majority of packets. The only differ-
ence between figures 1 and 2 is in the center DRAM memo-
ries. Figure 2 uses b interleaved DRAM memories to replace 
the single DRAM in figure 1.
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Figure 2: Hybrid memory architecture with interleaved DRAM in the 
center and smaller SRAM in the heads and tails of each FIFO queue. 
The MMA resolves the write/read conflicts of individual DRAM. 

We define parameters in figure 2 here. Logically, the 
memory system maintains Q FIFO queues from the outside 

point of view. We interleave b DRAM memories in our basic 
architecture, where b is the ratio of the access time of the 
DRAM to that of the SRAM. The value of b is normally 
around 15 according to current memory technology. We will 
see later that we can even make b larger than this ratio so that 
we can make the memory system more scalable. For simplicity 
of the presentation, we define the access time of SRAM one
time slot. We also assume, in one time slot, one packet comes 
in and the arbiter issues one request. We can see that the ac-
cess time of the DRAM is b time slots. That is to say, in b time 
slots, the DRAM can be written (read) once. 

In figure 1, the MMA transfers b packets of the same 
FIFO queue as a whole into the DRAM in b time slots. In fig-
ure 2, the MMA transfers b packets (not necessarily from the 
same queue) from the SRAM to feed the b interleaved DRAM 
memories individually (one packet per DRAM) in b time slots. 
We maintain Q FIFO queues in every central DRAM and the 
head and tail SRAM memories. 

We make two assumptions here. First, we assume all in-
coming packets of the same size. Second, we assume we have 
heavy traffic conditions. That is to say, there are always pack-
ets arriving at the tail SRAM and sufficiently many packets are 
present in the DRAM. If the traffic is light, packets may not go 
through the DRAM memories. We defer this discussion later. 

B. Packet Placement in the Interleaved DRAM Memories 

Packets belonging to the same FIFO queue will be placed 
into the central DRAM memories in a round robin way, as 
show in figure 3. But they are not necessarily transferred into 
the DRAM in their arriving order. In particular, when a packet 
comes into the SRAM, the DRAM which it should be written 
into is determined immediately, but when to write the packet 
to it is determined by the MMA. This provides flexibility to 
the MMA. Assuming the packet is the i-th packet in its FIFO 
queue, it should be written into the j-th DRAM, where j = i
mod b, as shown in figure 3. 
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Figure 3: Packets belonging to the same queue are placed into the 
interleaved DRAM memories in a round robin fashion. The MMA is 
designed to schedule packets from the tail SRAM to DRAM memo-
ries without write conflicts. 
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In this paper, we only study scheduling packets between 
the tail SRAM and the central interleaved DRAM, which cor-
responds to the left MMA in figure 2. It is interesting to notice 
that scheduling packets between the interleaved DRAM and 
the head SRAM which corresponds to the right MMA in figure 
2 is similar to the left MMA due to the symmetric property of 
this architecture. Put in another way, we can queue the re-
quests from the arbitrary arbiter in the head FIFO queues and 
think of them as negative packets. Scheduling packets from the 
central DRAM to the head SRAM can be thought of as sched-
uling the negative packets (requests) from the head SRAM to 
the central DRAM. 

IV. SCHEDULING THE INTERLEAVED DRAM 
The MMA in figure 1 mainly determines which queue in 

the SRAM should collect b packets in a block and then transfer 
them into the DRAM. The MMA in figure 2 mainly deter-
mines which b packets should be transferred into the b indi-
vidual DRAM memories without conflict. We say there is a 
conflict in a DRAM, if two packets are required to be written 
into that DRAM in b time slots. It is obvious to see that b con-
secutive packets belonging to the same queue surely have no 
conflict, since they are distributed into the DRAM in a round 
robin way. 

However, always scheduling ‘b packets of the same 
queue’ will surely add some unnecessary delay to some pack-
ets. We can make the scheduling granularity finer by breaking 
the ‘b packets of one queue’ constraint and try to transfer 
packets upon arriving at the tail SRAM into the DRAM as 
soon as possible. Since every packet has a definite DRAM to 
be written into, write conflicts may occur between two con-
secutive packets. The MMA is mainly to resolve this kind of 
conflicts. 

For the simplicity of presentation, we assume one single 
FIFO queue in the tail SRAM. All packets belonging to differ-
ent queues just queue in one single queue ordered by their ar-
riving time, as shown in the vertical queue in figure 3.  

The MMA runs in rounds. In general, in one round b
packets are transfers from the tail SRAM to the b interleaved 
DRAM memories (one packet per DRAM). One round takes b
time slots since the access time of each DRAM is b time slots.  

In the beginning of one round, the MMA examines pack-
ets from the head of the SRAM FIFO queue. Every packet 
knows exactly which DRAM it should go into. If the DRAM 
the packet will go into is not reserved, the packet reserves that 
DRAM. Otherwise, the MMA just skips this packet and exam-
ines the next packet in the SRAM FIFO queue. The MMA 
stops examining packets when all b DRAM memories are re-
served and then transfers all the b packets that reserve the 
DRAM memories. Then the MMA cancels all the DRAM res-
ervations and starts the next round of examination and trans-
ferring. In fact, examining and transferring packets can be 
pipelined. 

We formulate this algorithm as a Cumulative Matching 
(CM) problem in the bipartite graph and call the corresponding 
memory management algorithm CM-MMA. 

P1   P2   P3   P4   P5   P6 ...... Pb  Pb+1 ......PQ  PQ+1 ......

DRAM1 DRAM2 DRAM3 DRAMb

MMA examining

Figure 4: Bipartite graph for Cumulative Matching 

In figure 4, the upper row of b vertices stand for the b
DRAM memories and the lower row of infinite vertices stand 
for incoming packets. An arrow edge from a packet to a 
DRAM means that the packet wants to reserve that DRAM. 
The CM-MMA examines packets from the left to the right and 
makes reservations. One successful reservation corresponds to 
one matching (the thick line) in the bipartite graph in figure 4. 
When the b DRAM memories are all reserved, we say the 
maximum matching has been found and the CM-MMA starts 
to transfer the matched packets from the SRAM to the DRAM 
memories. Then the CM-MMA removes the corresponding b
vertices in the lower row and starts examining packets again 
from the left for the next round of matching. 

We note here that Q is much larger than b. In fact, in prac-
tice Q is at the order of thousands. Intuitively, since the value 
of b is around 15, the CM-MMA will not advance right too 
much to find a maximum matching. 

V. ANALYSIS OF THE CM-MMA 
Now we will investigate the properties of the cumulative 

matching in figure 4. 
It is obvious to see that the CM-MMA guarantees that 

there is no starvation of any packet since the head packet of 
the SRAM FIFO queue is always matched in the final match-
ing. That is to say, the CM-MMA advances at least one packet 
forward in one round. 

Lemma 1: Under the CM-MMA, the maximum matching 
is always achievable if the number of packets in the SRAM is 
larger than ( 1)Q b .

Proof: (By contradiction) 
We start the proof from the very first round of the CM-

MMA when packets belonging to the same queue are assigned 
orders consecutively. Assume that the CM-MMA has exam-
ined ( 1) 1Q b  packets and there is at least one DRAM re-
maining unmatched. This means that none of the 

( 1) 1Q b packets reserves that DRAM. Since packets be-
longing to the same queue are assigned to the DRAM memo-
ries in a round robin fashion and they are consecutively or-
dered, no queue can contain more than 1b  packets. Other-
wise, the DRAM will be reserved by at least one of the packets 
from that queue. Since there are Q queues in the system, pack-
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ets in the SRAM should not exceed ( 1)Q b , which leads to a 
contradiction. 

For the following rounds of matching, packets belonging 
to the same queue may not be consecutive since some packets 
are removed from the queue according to the CM-MMA, but 
we can still prove that every DRAM will be reserved if the 
number of packets in the SRAM is larger than ( 1)Q b . The 
intuition here is that in every round b packets are switched out 
and b packets are filled in the SRAM as well. We defer the 
detailed proof to the appendix. 

Lemma 2: Under the CM-MMA, given a DRAM j, for 
any ( 1) 1Q b  packets in the SRAM, there are at most 
2 ( 1) 1Q b

b
packets that reserve the DRAM j.

This lemma is also easy to understand. For the very first 
round of matching, since every two packets from the same 
queue reserving the same DRAM will be jammed with at least 
other 1b packets from the same queue. That is to say, pack-
ets reserve the same DRAM cannot be too close. However, for 
the following rounds of matching, packets of the same queue 
will be non-consecutive. However, this property still holds for 
that situation. We defer the detailed proof to the appendix.   

In summary, the two lemmas state this property: given a 
DRAM j, under the CM-MMA, for ( 1) 1Q b packets resid-
ing in the SRAM, there are at least one packet and at 

most 2 ( 1) 1Q b
b

 packets that reserve the DRAM j.

We say an MMA is stable if with this MMA the SRAM 
will not overflow under any arriving traffic patterns. 

Theorem: A size of ( 1) 1Q b  for the SRAM suffices 
for the CM-MMA to be stable in transferring packets from the 
SRAM to the interleaved DRAM memories. The possible de-
lay of one packet is bounded within 2 ( 1) 1Q b time slots. 

Proof: From lemma 1, we can see that if the size of the 
SRAM is ( 1) 1Q b  and when the SRAM is full with pack-
ets, the CM-MMA will always find a maximum matching and 
dispatch the b packets into b DRAM memories in b time slots. 
In the meanwhile, there are at most b packets arriving at the 
SRAM in the b time slots. So, the number of packets in the 
SRAM will never exceed ( 1) 1Q b . This means that the CM 
MMA is stable. 

For the delay analysis, consider a packet P and it servers 
DRAM j. Lemma 2 states that in the SRAM there are no more 

than 2 ( 1) 1Q b
b

 packets which reserve the DRAM j if the 

size of the SRAM is ( 1) 1Q b . This suggests that packet P

will be matched no later than the 2 ( 1) 1Q b
b

-th round, 

which leads to a delay of no more than 2 ( 1) 1Q b  time slots 
since the CM-MMA takes b time slots in one round in dis-
patching packets from the SRAM to the interleaved DRAM. 

VI. PRACTICAL CONSIDERATIONS

We note here that the size of the SRAM requirement is the 
same as that in [1], but we use the interleaved DRAM in the 
center which can scale to a very larger size. That is to say, we 
use the same small size of the SRAM to support a lager 
DRAM main storage.  

To make the interleaved memory architecture even more 
scalable, we can extend b to a larger value, say, 2b. It is inter-
esting to see that even if we use 2b DRAM interleaved, we can 
still define the maximum matching to be b matches and only 
dispatch b packets into the 2b DRAM since the access time of 
the DRAM is b and b matches are enough to make the CM-
MMA stable. It is easy to see that the size of the SRAM and 
the delay of packets do not scale with the expansion of the 
interleaved DRAM. It is only dictated by the ratio of the ac-
cess time of the DRAM to the SRAM and the number of 
queues the memory system should maintain. 

The worst case packet delay of the CM-MMA is competi-
tive to that in [1]. However, since we break the ‘b packets of 
the same queue’ constraint, the performance is expected to be 
better, especially under some light traffic conditions for all 
queues. Assuming a light traffic condition and there are just 
several (say, less than b) packets in every queue, the MMA in 
[1] will keep waiting until one of the queues contains more 
than b packets, while the CM-MMA may still find a maximum 
matching since the bunch of b packets here do not necessarily 
come from the same queue. What is more, note that b packets 
from the same queue naturally form a maximum matching in 
CM-MMA. Therefore, the CM-MMA is responsively faster 
than the MMA in [1]. Put in another way, the MMA in [1] 
transfers packets in a granularity of b packets from the same 
queue, while the CM MMA transfers packets in a granularity 
of single packets and combines them to be a bunch of b pack-
ets. We will have numerical analysis and simulation results in 
a sequel paper. With real implementation that we state below, 
we can further improve the packet promptness, thus decreasing 
the packet delays. 

Both advantages we state above seem to come at the cost 
of the high-complexity CM-MMA. It is true that the crude 
version CM-MMA has a time complexity of ( )O Q since we 
may have to examine at most ( 1) 1Q b packets before find-
ing a maximum matching (b can be viewed as a constant). 
However, we can amortize this complexity to each packet to 
make the time complexity to be O(1). We can notice these two 
facts: a) packets do not change their reservations even if they 
fail in one round, and b) a previous reservation has priority 
over the later reservation to the same DRAM. Using these two 
facts, in real implementation we can buffer the reservation 
requests in every DRAM. Moreover, the transmission of 
matched packets does not need to be synchronized either. In 
particular, we can transfer a packet immediately after its arri-
val to the buffer of the corresponding DRAM. In this way, we 
do not need the ( 1) 1Q b size SRAM in the tail any longer, 
but we need SRAM buffers in each DRAM. Using lemma 2, it 
is obvious to see that the size of one buffer in the DRAM is 
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less than 2 ( 1) 1Q b
b

. Therefore, the total size of the SRAM 

is 2 ( 1) 1Q b  since we have b interleaved DRAM. It doubles
the size of tail SRAM, but the memories are distributed and we 
can employ static allocations for each SRAM as well. 

We can see that the time complexity to handle every 
packet is O(1) since it has the definite DRAM to go and every 
packet only makes its reservation once. Packet transmissions 
can be desynchronized. It further improves the promptness of 
arriving packets. This will especially benefit burst traffics. 

Another practical consideration is that we assumed heavy 
traffic in the proof of the theorem. In practice in the light traf-
fic conditions, the CM MMA should be modified slightly. The 
examination process will end whenever we find a maximum 
matching or reach the end of packet queue. This will also pro-
vide the CM MMA with the ability to cope with bursty traffic. 
The CM MMA will try to transfer packets at the silence of the 
arriving packets, not necessarily to wait until b packets are 
ready. 

VII. CONCLUSIONS

To make fast and large network memories, we employ a 
hybrid SRAM/DRAM architecture with interleaved DRAM in 
the middle for main packet storage and the SRAM in the tail 
(head) for write (read) buffering. 

We designed a deterministic memory management algo-
rithm to provide hard performance guarantees to the memory 
system. In particular, we can provide more scalability of the 
memory system and less average delay with the same SRAM 
size requirement as that in previous work in [1]. 

We believe the CM-MMA algorithm is ready to be im-
plemented in hardware and capable of building high-
performance network memories for several generations of 
technologies to come. 
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APPENDIX

Complete Proof of Lemma 1 and Lemma 2 

We prove the two lemmas together. 
Consider a DRAM j. Assume the CM-MMA has run for n

rounds and the SRAM is full with ( 1) 1Q b packets. 
Therefore, there are ( 1) 1Q b nb packets in total, 

which have arrived in the memory system. Considering a arbi-
trary DRAM j, we analyze how many packets could reserve 
the DRAM j.

We use iq to denote the number of packets belonging to 
the i-th FIFO queue. Then iq can always be represented by the 
following form: 

(0 )i i i iq n b m m b
This form tells that at least in packets and at most 
1in packets from the i-th FIFO queue reserve the DRAM j,

since all the packets are assigned to the DRAM in a round 
robin way. 

Then 1 ( 1) 1Q
i iq Q b nb .

That is to say: 
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This formula indicates that among the ( 1) 1Q b nb

packets there are at least 1n  packets that reserve the DRAM 
j. Since every round matches exactly one packet to the DRAM 
j, after n rounds, there is at least one packet left that reserves 
the DRAM j in the ( 1) 1Q b b packets. This proves lemma 1. 

It is obvious to see that for (0 )i i i iq n b m m b  pack-
ets in the i-th FIFO queue, there are at most 1in packets 
which can reserve the DRAM j, and 1im .

Thus, we can calculate  
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Using the same analysis as above, we can see that there 

are at most 2 ( 1) 1Q b
b

 packets that reserve the DRAM j

after n rounds. This proves lemma 2. 
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